Доброго времени суток! Уважаемые знатоки, подскажите пожалуйста, как мне запустить расчёт. Я подготовил расчёт в Fluid flow cfx, ошибок никаких не показало, после открытия Solution и запуска расчёта мне выдало вот такую штуку -
The ANSYS CFX partitioner has terminated without writing a partitioning
information file.
далее было -
Fluid Flow CFX_003 has terminated with errors.
Run concluded at: Чт 28. янв 16:18:09 2016
No results are available.
В итоге, в окне Workbench вышло - update failed for the solution component in Fluid flow (CFX). The solcer failed with a non_zero exit code of : 2
Вот лог расчёта:
This run of the CFX-15.0.7 Solver started at 16:17:52 on 28 Jan 2016 by
user ansys on USER (intel_xeon64.sse2_winnt) using the command:
"C:\Program Files\ANSYS Inc\v150\CFX\bin\perllib\cfx5solve.pl" -batch
-ccl runInput.ccl -fullname "Fluid Flow CFX_003"
Point Releases and Patches installed:
ANSYS, Inc. Products 15.0.7
ANSYS Mechanical Products 15.0.7
ANSYS Autodyn 15.0.7
ANSYS LS-DYNA 15.0.7
ANSYS CFX (includes ANSYS CFD-Post) 15.0.7
ANSYS Fluent (includes ANSYS CFD-Post) 15.0.7
ANSYS TurboGrid 15.0.7
ANSYS Polyflow (includes ANSYS CFD-Post) 15.0.7
ANSYS Aqwa 15.0.7
ANSYS ICEM CFD 15.0.7
ANSYS Icepak (includes ANSYS CFD-Post) 15.0.7
Catia, Version 6 15.0.7
ANSYS, Inc. License Manager 15.0.7
Setting up CFX Solver run ...
+--------------------------------------------------------------------+
| |
| CFX Command Language for Run |
| |
+--------------------------------------------------------------------+
LIBRARY:
MATERIAL: Aluminium
Material Group = CHT Solids, Particle Solids
Option = Pure Substance
Thermodynamic State = Solid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 2702 [kg m^-3]
Molar Mass = 26.98 [kg kmol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = 9.03E+02 [J kg^-1 K^-1]
END
REFERENCE STATE:
Option = Specified Point
Reference Specific Enthalpy = 0 [J/kg]
Reference Specific Entropy = 0 [J/kg/K]
Reference Temperature = 25 [C]
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 237 [W m^-1 K^-1]
END
END
END
MATERIAL: Water
Material Description = Water (liquid)
Material Group = Water Data, Constant Property Liquids
Option = Pure Substance
Thermodynamic State = Liquid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 997.0 [kg m^-3]
Molar Mass = 18.02 [kg kmol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
Specific Heat Type = Constant Pressure
END
REFERENCE STATE:
Option = Specified Point
Reference Pressure = 1 [atm]
Reference Specific Enthalpy = 0.0 [J/kg]
Reference Specific Entropy = 0.0 [J/kg/K]
Reference Temperature = 25 [C]
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
Option = Value
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 0.6069 [W m^-1 K^-1]
END
ABSORPTION COEFFICIENT:
Absorption Coefficient = 1.0 [m^-1]
Option = Value
END
SCATTERING COEFFICIENT:
Option = Value
Scattering Coefficient = 0.0 [m^-1]
END
REFRACTIVE INDEX:
Option = Value
Refractive Index = 1.0 [m m^-1]
END
THERMAL EXPANSIVITY:
Option = Value
Thermal Expansivity = 2.57E-04 [K^-1]
END
END
END
END
FLOW: Flow Analysis 1
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units = [s]
END
ANALYSIS TYPE:
Option = Steady State
EXTERNAL SOLVER COUPLING:
Option = None
END
END
DOMAIN: Default Domain
Coord Frame = Coord 0
Domain Type = Fluid
Location = B18
BOUNDARY: Default Domain Default
Boundary Type = WALL
Location = F21.18,F22.18
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
BOUNDARY: Default Fluid Solid Interface Side 1
Boundary Type = INTERFACE
Location = F19.18,F20.18
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID DEFINITION: Fluid 1
Material = Water
Option = Material Library
MORPHOLOGY:
Option = Continuous Fluid
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = SST
END
TURBULENT WALL FUNCTIONS:
Option = Automatic
END
END
END
DOMAIN: gilza
Coord Frame = Coord 0
Domain Type = Solid
Location = B295
BOUNDARY: Default Fluid Solid Interface in gilza Side 2
Boundary Type = INTERFACE
Location = F298.295,F302.295,F303.295,F306.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: Default Solid Solid Interface Side 1
Boundary Type = INTERFACE
Location = F304.295,F313.295,F314.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: gilza Default
Boundary Type = WALL
Location = \
F297.295,F299.295,F300.295,F301.295,F305.295,F307.295,F308.295,F309.2\
95,F310.295,F311.295,F312.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: gilza_korpus Side 1
Boundary Type = INTERFACE
Location = F296.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN: korpus
Coord Frame = Coord 0
Domain Type = Solid
Location = B165
BOUNDARY: Default Fluid Solid Interface Side 2
Boundary Type = INTERFACE
Location = F179.165,F180.165,F181.165,F182.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: Default Solid Solid Interface Side 2
Boundary Type = INTERFACE
Location = F174.165,F175.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: gilza_korpus Side 2
Boundary Type = INTERFACE
Location = F166.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: korpus Default
Boundary Type = WALL
Location = \
F167.165,F168.165,F169.165,F171.165,F172.165,F176.165,F177.165,F178.1\
65,F183.165,F184.165,F185.165,F186.165,F187.165,F188.165,F189.165,F19\
0.165,F191.165,F192.165,F193.165,F194.165,F195.165,F196.165,F197.165,\
F198.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: ten_korpus Side 2
Boundary Type = INTERFACE
Location = F170.165,F173.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN: potok
Coord Frame = Coord 0
Domain Type = Fluid
Location = B45
BOUNDARY: Default Fluid Solid Interface in potok Side 1
Boundary Type = INTERFACE
Location = F49.45,F50.45,F51.45
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
BOUNDARY: inlet
Boundary Type = INLET
Location = F46.45
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END
HEAT TRANSFER:
Option = Static Temperature
Static Temperature = 10 [C]
END
MASS AND MOMENTUM:
Normal Speed = 0.5 [m s^-1]
Option = Normal Speed
END
TURBULENCE:
Option = Medium Intensity and Eddy Viscosity Ratio
END
END
END
BOUNDARY: outlet
Boundary Type = OUTLET
Location = F47.45
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Static Pressure
Relative Pressure = 101325 [Pa]
END
END
END
BOUNDARY: ten_potok Side 1
Boundary Type = INTERFACE
Location = F48.45,F52.45,F53.45
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID DEFINITION: Fluid 1
Material = Water
Option = Material Library
MORPHOLOGY:
Option = Continuous Fluid
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = SST
END
TURBULENT WALL FUNCTIONS:
Option = Automatic
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
Velocity Type = Cartesian
CARTESIAN VELOCITY COMPONENTS:
Option = Automatic
END
STATIC PRESSURE:
Option = Automatic
END
TEMPERATURE:
Option = Automatic
END
TURBULENCE INITIAL CONDITIONS:
Option = Medium Intensity and Eddy Viscosity Ratio
END
END
END
END
DOMAIN: ten
Coord Frame = Coord 0
Domain Type = Solid
Location = B78
BOUNDARY: ten Default
Boundary Type = WALL
Location = F79.78,F80.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: ten_korpus Side 1
Boundary Type = INTERFACE
Location = F82.78,F84.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: ten_potok Side 2
Boundary Type = INTERFACE
Location = F81.78,F83.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN INTERFACE: Default Fluid Solid Interface
Boundary List1 = Default Fluid Solid Interface Side 1,Default Fluid \
Solid Interface in potok Side 1
Boundary List2 = Default Fluid Solid Interface Side 2,Default Fluid \
Solid Interface in gilza Side 2
Interface Type = Fluid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = GGI
END
END
DOMAIN INTERFACE: Default Solid Solid Interface
Boundary List1 = Default Solid Solid Interface Side 1
Boundary List2 = Default Solid Solid Interface Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = GGI
END
END
DOMAIN INTERFACE: gilza_korpus
Boundary List1 = gilza_korpus Side 1
Boundary List2 = gilza_korpus Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
HEAT TRANSFER:
Option = Conservative Interface Flux
HEAT TRANSFER INTERFACE MODEL:
Option = None
END
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
DOMAIN INTERFACE: ten_korpus
Boundary List1 = ten_korpus Side 1
Boundary List2 = ten_korpus Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
DOMAIN INTERFACE: ten_potok
Boundary List1 = ten_potok Side 1
Boundary List2 = ten_potok Side 2
Interface Type = Fluid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
OUTPUT CONTROL:
RESULTS:
File Compression Level = Default
Option = Standard
END
END
SOLVER CONTROL:
Turbulence Numerics = First Order
ADVECTION SCHEME:
Option = High Resolution
END
CONVERGENCE CONTROL:
Length Scale Option = Conservative
Maximum Number of Iterations = 100
Minimum Number of Iterations = 1
Solid Timescale Control = Auto Timescale
Timescale Control = Auto Timescale
Timescale Factor = 1.0
END
CONVERGENCE CRITERIA:
Residual Target = 1.E-4
Residual Type = RMS
END
DYNAMIC MODEL CONTROL:
Global Dynamic Model Control = On
END
END
END
COMMAND FILE:
Version = 15.0
Results Version = 15.0.7
END
SIMULATION CONTROL:
EXECUTION CONTROL:
EXECUTABLE SELECTION:
Double Precision = Off
END
INTERPOLATOR STEP CONTROL:
Runtime Priority = Standard
DOMAIN SEARCH CONTROL:
Bounding Box Tolerance = 0.01
END
INTERPOLATION MODEL CONTROL:
Enforce Strict Name Mapping for Phases = Off
Mesh Deformation Option = Automatic
Particle Relocalisation Tolerance = 0.01
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
END
PARALLEL HOST LIBRARY:
HOST DEFINITION: user
Host Architecture String = winnt-amd64
Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX
END
END
PARTITIONER STEP CONTROL:
Multidomain Option = Independent Partitioning
Runtime Priority = Standard
EXECUTABLE SELECTION:
Use Large Problem Partitioner = Off
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARTITIONING TYPE:
MeTiS Type = k-way
Option = MeTiS
Partition Size Rule = Automatic
Partition Weight Factors = 0.25000, 0.25000, 0.25000, 0.25000
END
END
RUN DEFINITION:
Run Mode = Full
Solver Input File = Fluid Flow CFX.def
END
SOLVER STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARALLEL ENVIRONMENT:
Number of Processes = 4
Start Method = Platform MPI Local Parallel
Parallel Host List = user*4
END
END
END
END
+--------------------------------------------------------------------+
| |
| Partitioning |
| |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| |
| ANSYS(R) CFX(R) Partitioner 15.0.7 |
| |
| Version 2014.04.10-23.00-131675 Thu Apr 10 23:23:37 GMTDT 2014 |
| |
| Executable Attributes |
| |
| single-64bit-int32-supfort-optimised-noprof-lcomp |
| |
| (C) 2014 ANSYS, Inc. |
| |
| All rights reserved. Unauthorized use, distribution or duplication |
| is prohibited. This product is subject to U.S. laws governing |
| export and re-export. For full Legal Notice, see documentation. |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| Job Information at Start of Run |
+--------------------------------------------------------------------+
Run mode: partitioning run
+------------------------------+------+--------+----------+----------+
| Host | Mesh | PID | Job Started |
| | Part | | DD/MM/YY | hh:mm:ss |
+------------------------------+------+--------+----------+----------+
| USER | 1 | 4948 | 28/01/16 | 16:17:54 |
+------------------------------+------+--------+----------+----------+
+--------------------------------------------------------------------+
| Memory Allocated for Run (Actual usage may be less) |
+--------------------------------------------------------------------+
| Real | Integer | Character | Logical | Double
----------+------------+------------+-----------+----------+----------
Mwords | 5.03 | 7.57 | 3.42 | 0.12 | 1.20
Mbytes | 19.20 | 28.88 | 3.26 | 0.46 | 9.16
----------+------------+------------+-----------+----------+----------
+--------------------------------------------------------------------+
| Host Memory Information (Mbytes) |
+--------------------------------------------------------------------+
| Host | System | Allocated | % |
+-------------------------+----------------+----------------+--------+
| USER | 4059.79 | 60.96 | 1.50 |
+-------------------------+----------------+----------------+--------+
+--------------------------------------------------------------------+
| ********* WARNING ********* |
| No control surfaces have been found for the domain interface |
| |
| gilza_korpus |
| |
| If you expect this to occur, please set the INTERSECTION CONTROL |
| CCL parameter 'Permit No Intersection' to work around this message.|
| Non-intersecting interfaces are only supported for 'dynamic' |
| interfaces which are re-intersected at every time step |
| (e.g. transient rotor stator interfaces or non-stationary |
| interfaces in moving mesh cases). |
| |
| Possible setup errors leading to this situation are: |
| 1. An incorrect axis of rotation for a rotating domain or domain |
| interface. |
| 2. A frame change model is used in which there is unequal pitch |
| shapes, or circumferential orientation, but the Pitch Change |
| model is set to None. |
| 3. The transient rotor stator model is used when the geometry |
| does not span 360 degrees and the Pitch Change model is set to |
| 'None'. |
| 4. The detected normal gap between interface sides is larger than |
| the allowed tolerance. See the documentation for controlling |
| this tolerance. |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| An error has occurred in cfx5solve: |
| |
| The ANSYS CFX partitioner has terminated without writing a |
| partitioning information file. |
+--------------------------------------------------------------------+
This run of the ANSYS CFX Solver has finished.
Искренне надеюсь на вашу помощь.
| Possible setup errors leading to this situation are: |
| 1. An incorrect axis of rotation for a rotating domain or domain |
| interface. |
| 2. A frame change model is used in which there is unequal pitch |
| shapes, or circumferential orientation, but the Pitch Change |
| model is set to None. |
| 3. The transient rotor stator model is used when the geometry |
| does not span 360 degrees and the Pitch Change model is set to |
| 'None'. |
| 4. The detected normal gap between interface sides is larger than |
| the allowed tolerance. See the documentation for controlling |
| this tolerance.
это список возможных решений проблемы
PS: сетка у вас никакая
Этот расчёт сделан как образец, ему не нужны очень точные данные
Испытайте новые горизонты онлайн-гемблинга на casino официальный. Начните играть сегодня на сайте <a href=https://casinoxmirror.homes>casinoxmirror.homes</a> и откройте для себя новые возможности вместе с нами.
<a href=http://bcentro.ru/nashi_raboty/chastnyj_obekt/chastnyj_obekt_04/>Испытайте яркие эмоции на casino официальный сайт играть прямо сейчас</a>
<a href=http://samorezi.com/vse_novosti/novosti_iz_mira_homyachkov/>Испытайте захватывающие игры на casino зарегистрироваться прямо сейчас</a>
<a href=http://konturopt.ru/bitrix/redirect.php?goto=https://goinweb.ru:443/eto-...Ощутите захватывающие игры на casino на деньги сегодня</a>
81d1e90
https://catcasinohome.fun
Насладитесь увлекательные возможности игровой индустрии на casino игровые автоматы. Присоединяйтесь без промедления на сайте https://pokerd-dom-casino.shop и насладитесь захватывающей игрой не выходя из дома.
Ощутите мир азарта на casino официальный сайт играть онлайн прямо сейчас
Ощутите мир азарта на casino регистрация не выходя из дома
Испытайте мир азарта на сайт casino сегодня
e907e92
https://casinochampion.homes
Добавить комментарий