Доброго времени суток! Уважаемые знатоки, подскажите пожалуйста, как мне запустить расчёт. Я подготовил расчёт в Fluid flow cfx, ошибок никаких не показало, после открытия Solution и запуска расчёта мне выдало вот такую штуку -
The ANSYS CFX partitioner has terminated without writing a partitioning
information file.
далее было -
Fluid Flow CFX_003 has terminated with errors.
Run concluded at: Чт 28. янв 16:18:09 2016
No results are available.
В итоге, в окне Workbench вышло - update failed for the solution component in Fluid flow (CFX). The solcer failed with a non_zero exit code of : 2
Вот лог расчёта:
This run of the CFX-15.0.7 Solver started at 16:17:52 on 28 Jan 2016 by
user ansys on USER (intel_xeon64.sse2_winnt) using the command:
"C:\Program Files\ANSYS Inc\v150\CFX\bin\perllib\cfx5solve.pl" -batch
-ccl runInput.ccl -fullname "Fluid Flow CFX_003"
Point Releases and Patches installed:
ANSYS, Inc. Products 15.0.7
ANSYS Mechanical Products 15.0.7
ANSYS Autodyn 15.0.7
ANSYS LS-DYNA 15.0.7
ANSYS CFX (includes ANSYS CFD-Post) 15.0.7
ANSYS Fluent (includes ANSYS CFD-Post) 15.0.7
ANSYS TurboGrid 15.0.7
ANSYS Polyflow (includes ANSYS CFD-Post) 15.0.7
ANSYS Aqwa 15.0.7
ANSYS ICEM CFD 15.0.7
ANSYS Icepak (includes ANSYS CFD-Post) 15.0.7
Catia, Version 6 15.0.7
ANSYS, Inc. License Manager 15.0.7
Setting up CFX Solver run ...
+--------------------------------------------------------------------+
| |
| CFX Command Language for Run |
| |
+--------------------------------------------------------------------+
LIBRARY:
MATERIAL: Aluminium
Material Group = CHT Solids, Particle Solids
Option = Pure Substance
Thermodynamic State = Solid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 2702 [kg m^-3]
Molar Mass = 26.98 [kg kmol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = 9.03E+02 [J kg^-1 K^-1]
END
REFERENCE STATE:
Option = Specified Point
Reference Specific Enthalpy = 0 [J/kg]
Reference Specific Entropy = 0 [J/kg/K]
Reference Temperature = 25 [C]
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 237 [W m^-1 K^-1]
END
END
END
MATERIAL: Water
Material Description = Water (liquid)
Material Group = Water Data, Constant Property Liquids
Option = Pure Substance
Thermodynamic State = Liquid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 997.0 [kg m^-3]
Molar Mass = 18.02 [kg kmol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
Specific Heat Type = Constant Pressure
END
REFERENCE STATE:
Option = Specified Point
Reference Pressure = 1 [atm]
Reference Specific Enthalpy = 0.0 [J/kg]
Reference Specific Entropy = 0.0 [J/kg/K]
Reference Temperature = 25 [C]
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
Option = Value
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 0.6069 [W m^-1 K^-1]
END
ABSORPTION COEFFICIENT:
Absorption Coefficient = 1.0 [m^-1]
Option = Value
END
SCATTERING COEFFICIENT:
Option = Value
Scattering Coefficient = 0.0 [m^-1]
END
REFRACTIVE INDEX:
Option = Value
Refractive Index = 1.0 [m m^-1]
END
THERMAL EXPANSIVITY:
Option = Value
Thermal Expansivity = 2.57E-04 [K^-1]
END
END
END
END
FLOW: Flow Analysis 1
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units = [s]
END
ANALYSIS TYPE:
Option = Steady State
EXTERNAL SOLVER COUPLING:
Option = None
END
END
DOMAIN: Default Domain
Coord Frame = Coord 0
Domain Type = Fluid
Location = B18
BOUNDARY: Default Domain Default
Boundary Type = WALL
Location = F21.18,F22.18
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
BOUNDARY: Default Fluid Solid Interface Side 1
Boundary Type = INTERFACE
Location = F19.18,F20.18
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID DEFINITION: Fluid 1
Material = Water
Option = Material Library
MORPHOLOGY:
Option = Continuous Fluid
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = SST
END
TURBULENT WALL FUNCTIONS:
Option = Automatic
END
END
END
DOMAIN: gilza
Coord Frame = Coord 0
Domain Type = Solid
Location = B295
BOUNDARY: Default Fluid Solid Interface in gilza Side 2
Boundary Type = INTERFACE
Location = F298.295,F302.295,F303.295,F306.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: Default Solid Solid Interface Side 1
Boundary Type = INTERFACE
Location = F304.295,F313.295,F314.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: gilza Default
Boundary Type = WALL
Location = \
F297.295,F299.295,F300.295,F301.295,F305.295,F307.295,F308.295,F309.2\
95,F310.295,F311.295,F312.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: gilza_korpus Side 1
Boundary Type = INTERFACE
Location = F296.295
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN: korpus
Coord Frame = Coord 0
Domain Type = Solid
Location = B165
BOUNDARY: Default Fluid Solid Interface Side 2
Boundary Type = INTERFACE
Location = F179.165,F180.165,F181.165,F182.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: Default Solid Solid Interface Side 2
Boundary Type = INTERFACE
Location = F174.165,F175.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: gilza_korpus Side 2
Boundary Type = INTERFACE
Location = F166.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: korpus Default
Boundary Type = WALL
Location = \
F167.165,F168.165,F169.165,F171.165,F172.165,F176.165,F177.165,F178.1\
65,F183.165,F184.165,F185.165,F186.165,F187.165,F188.165,F189.165,F19\
0.165,F191.165,F192.165,F193.165,F194.165,F195.165,F196.165,F197.165,\
F198.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: ten_korpus Side 2
Boundary Type = INTERFACE
Location = F170.165,F173.165
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN: potok
Coord Frame = Coord 0
Domain Type = Fluid
Location = B45
BOUNDARY: Default Fluid Solid Interface in potok Side 1
Boundary Type = INTERFACE
Location = F49.45,F50.45,F51.45
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
BOUNDARY: inlet
Boundary Type = INLET
Location = F46.45
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END
HEAT TRANSFER:
Option = Static Temperature
Static Temperature = 10 [C]
END
MASS AND MOMENTUM:
Normal Speed = 0.5 [m s^-1]
Option = Normal Speed
END
TURBULENCE:
Option = Medium Intensity and Eddy Viscosity Ratio
END
END
END
BOUNDARY: outlet
Boundary Type = OUTLET
Location = F47.45
BOUNDARY CONDITIONS:
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Option = Static Pressure
Relative Pressure = 101325 [Pa]
END
END
END
BOUNDARY: ten_potok Side 1
Boundary Type = INTERFACE
Location = F48.45,F52.45,F53.45
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
MASS AND MOMENTUM:
Option = No Slip Wall
END
WALL ROUGHNESS:
Option = Smooth Wall
END
END
END
DOMAIN MODELS:
BUOYANCY MODEL:
Option = Non Buoyant
END
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
REFERENCE PRESSURE:
Reference Pressure = 1 [atm]
END
END
FLUID DEFINITION: Fluid 1
Material = Water
Option = Material Library
MORPHOLOGY:
Option = Continuous Fluid
END
END
FLUID MODELS:
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = SST
END
TURBULENT WALL FUNCTIONS:
Option = Automatic
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
Velocity Type = Cartesian
CARTESIAN VELOCITY COMPONENTS:
Option = Automatic
END
STATIC PRESSURE:
Option = Automatic
END
TEMPERATURE:
Option = Automatic
END
TURBULENCE INITIAL CONDITIONS:
Option = Medium Intensity and Eddy Viscosity Ratio
END
END
END
END
DOMAIN: ten
Coord Frame = Coord 0
Domain Type = Solid
Location = B78
BOUNDARY: ten Default
Boundary Type = WALL
Location = F79.78,F80.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: ten_korpus Side 1
Boundary Type = INTERFACE
Location = F82.78,F84.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: ten_potok Side 2
Boundary Type = INTERFACE
Location = F81.78,F83.78
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic
END
END
END
SOLID DEFINITION: Solid 1
Material = Aluminium
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN INTERFACE: Default Fluid Solid Interface
Boundary List1 = Default Fluid Solid Interface Side 1,Default Fluid \
Solid Interface in potok Side 1
Boundary List2 = Default Fluid Solid Interface Side 2,Default Fluid \
Solid Interface in gilza Side 2
Interface Type = Fluid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = GGI
END
END
DOMAIN INTERFACE: Default Solid Solid Interface
Boundary List1 = Default Solid Solid Interface Side 1
Boundary List2 = Default Solid Solid Interface Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = GGI
END
END
DOMAIN INTERFACE: gilza_korpus
Boundary List1 = gilza_korpus Side 1
Boundary List2 = gilza_korpus Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
HEAT TRANSFER:
Option = Conservative Interface Flux
HEAT TRANSFER INTERFACE MODEL:
Option = None
END
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
DOMAIN INTERFACE: ten_korpus
Boundary List1 = ten_korpus Side 1
Boundary List2 = ten_korpus Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
DOMAIN INTERFACE: ten_potok
Boundary List1 = ten_potok Side 1
Boundary List2 = ten_potok Side 2
Interface Type = Fluid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
OUTPUT CONTROL:
RESULTS:
File Compression Level = Default
Option = Standard
END
END
SOLVER CONTROL:
Turbulence Numerics = First Order
ADVECTION SCHEME:
Option = High Resolution
END
CONVERGENCE CONTROL:
Length Scale Option = Conservative
Maximum Number of Iterations = 100
Minimum Number of Iterations = 1
Solid Timescale Control = Auto Timescale
Timescale Control = Auto Timescale
Timescale Factor = 1.0
END
CONVERGENCE CRITERIA:
Residual Target = 1.E-4
Residual Type = RMS
END
DYNAMIC MODEL CONTROL:
Global Dynamic Model Control = On
END
END
END
COMMAND FILE:
Version = 15.0
Results Version = 15.0.7
END
SIMULATION CONTROL:
EXECUTION CONTROL:
EXECUTABLE SELECTION:
Double Precision = Off
END
INTERPOLATOR STEP CONTROL:
Runtime Priority = Standard
DOMAIN SEARCH CONTROL:
Bounding Box Tolerance = 0.01
END
INTERPOLATION MODEL CONTROL:
Enforce Strict Name Mapping for Phases = Off
Mesh Deformation Option = Automatic
Particle Relocalisation Tolerance = 0.01
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
END
PARALLEL HOST LIBRARY:
HOST DEFINITION: user
Host Architecture String = winnt-amd64
Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX
END
END
PARTITIONER STEP CONTROL:
Multidomain Option = Independent Partitioning
Runtime Priority = Standard
EXECUTABLE SELECTION:
Use Large Problem Partitioner = Off
END
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARTITIONING TYPE:
MeTiS Type = k-way
Option = MeTiS
Partition Size Rule = Automatic
Partition Weight Factors = 0.25000, 0.25000, 0.25000, 0.25000
END
END
RUN DEFINITION:
Run Mode = Full
Solver Input File = Fluid Flow CFX.def
END
SOLVER STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARALLEL ENVIRONMENT:
Number of Processes = 4
Start Method = Platform MPI Local Parallel
Parallel Host List = user*4
END
END
END
END
+--------------------------------------------------------------------+
| |
| Partitioning |
| |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| |
| ANSYS(R) CFX(R) Partitioner 15.0.7 |
| |
| Version 2014.04.10-23.00-131675 Thu Apr 10 23:23:37 GMTDT 2014 |
| |
| Executable Attributes |
| |
| single-64bit-int32-supfort-optimised-noprof-lcomp |
| |
| (C) 2014 ANSYS, Inc. |
| |
| All rights reserved. Unauthorized use, distribution or duplication |
| is prohibited. This product is subject to U.S. laws governing |
| export and re-export. For full Legal Notice, see documentation. |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| Job Information at Start of Run |
+--------------------------------------------------------------------+
Run mode: partitioning run
+------------------------------+------+--------+----------+----------+
| Host | Mesh | PID | Job Started |
| | Part | | DD/MM/YY | hh:mm:ss |
+------------------------------+------+--------+----------+----------+
| USER | 1 | 4948 | 28/01/16 | 16:17:54 |
+------------------------------+------+--------+----------+----------+
+--------------------------------------------------------------------+
| Memory Allocated for Run (Actual usage may be less) |
+--------------------------------------------------------------------+
| Real | Integer | Character | Logical | Double
----------+------------+------------+-----------+----------+----------
Mwords | 5.03 | 7.57 | 3.42 | 0.12 | 1.20
Mbytes | 19.20 | 28.88 | 3.26 | 0.46 | 9.16
----------+------------+------------+-----------+----------+----------
+--------------------------------------------------------------------+
| Host Memory Information (Mbytes) |
+--------------------------------------------------------------------+
| Host | System | Allocated | % |
+-------------------------+----------------+----------------+--------+
| USER | 4059.79 | 60.96 | 1.50 |
+-------------------------+----------------+----------------+--------+
+--------------------------------------------------------------------+
| ********* WARNING ********* |
| No control surfaces have been found for the domain interface |
| |
| gilza_korpus |
| |
| If you expect this to occur, please set the INTERSECTION CONTROL |
| CCL parameter 'Permit No Intersection' to work around this message.|
| Non-intersecting interfaces are only supported for 'dynamic' |
| interfaces which are re-intersected at every time step |
| (e.g. transient rotor stator interfaces or non-stationary |
| interfaces in moving mesh cases). |
| |
| Possible setup errors leading to this situation are: |
| 1. An incorrect axis of rotation for a rotating domain or domain |
| interface. |
| 2. A frame change model is used in which there is unequal pitch |
| shapes, or circumferential orientation, but the Pitch Change |
| model is set to None. |
| 3. The transient rotor stator model is used when the geometry |
| does not span 360 degrees and the Pitch Change model is set to |
| 'None'. |
| 4. The detected normal gap between interface sides is larger than |
| the allowed tolerance. See the documentation for controlling |
| this tolerance. |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| An error has occurred in cfx5solve: |
| |
| The ANSYS CFX partitioner has terminated without writing a |
| partitioning information file. |
+--------------------------------------------------------------------+
This run of the ANSYS CFX Solver has finished.
Искренне надеюсь на вашу помощь.
| Possible setup errors leading to this situation are: |
| 1. An incorrect axis of rotation for a rotating domain or domain |
| interface. |
| 2. A frame change model is used in which there is unequal pitch |
| shapes, or circumferential orientation, but the Pitch Change |
| model is set to None. |
| 3. The transient rotor stator model is used when the geometry |
| does not span 360 degrees and the Pitch Change model is set to |
| 'None'. |
| 4. The detected normal gap between interface sides is larger than |
| the allowed tolerance. See the documentation for controlling |
| this tolerance.
это список возможных решений проблемы
PS: сетка у вас никакая
Этот расчёт сделан как образец, ему не нужны очень точные данные
Добавить комментарий