Здравствуйте! вылетает ошибка при запуске расчета в CFX, делаю дипломную работу по моделированию лазерного излучения, надеюсь на вашу помощь! Заранее спасибо!
Нашел похожую тему на данном форуме, там у автора была проблема с тем что стояла запятая вместо точки, проверил все значения - у меня везде точки.
вот лог файл:
This run of the CFX Release 18.2 Solver started at 12:50:25 on 09 Apr
2018 by user Vlad Lebed on DESKTOP-KNV36K5 (intel_xeon64.sse2_winnt)
using the command:
"C:\Program Files\ANSYS Inc\v182\CFX\bin\perllib\cfx5solve.pl" -batch
-ccl runInput.ccl -fullname 2703_002
Release 18.2
Point Releases and Patches installed:
ANSYS, Inc. Products Release 18.2
ANSYS Mechanical Products Release 18.2
ANSYS Autodyn Release 18.2
ANSYS LS-DYNA Release 18.2
ANSYS AIM Release 18.2
ANSYS CFX (includes ANSYS CFD-Post) Release 18.2
ANSYS Fluent (includes ANSYS CFD-Post) Release 18.2
ANSYS TurboGrid Release 18.2
ANSYS FENSAP-ICE Release 18.2
ANSYS Polyflow (includes ANSYS CFD-Post) Release 18.2
ANSYS Forte Release 18.2
ANSYS Chemkin Release 18.2
ANSYS ICEM CFD Release 18.2
ANSYS Aqwa Release 18.2
ANSYS Icepak (includes ANSYS CFD-Post) Release 18.2
AutoCAD Release 18.2
ACIS Release 18.2
Catia, Version 4 Release 18.2
Catia, Version 6 Release 18.2
Creo Elements/Direct Modeling Release 18.2
Inventor Release 18.2
JTOpen Release 18.2
NX Release 18.2
Parasolid Release 18.2
Creo Parametric Release 18.2
Solid Edge Release 18.2
SolidWorks Release 18.2
ANSYS, Inc. License Manager Release 18.2
Setting up CFX Solver run ...
+--------------------------------------------------------------------+
| |
| CFX Command Language for Run |
| |
+--------------------------------------------------------------------+
LIBRARY:
CEL:
EXPRESSIONS:
AL2A = al2o3a(T)
AL2C = al2o3c(T)
Al2 = al2o3des(T)
I = I0*(1-Rotr)*e^((kx/1[m-1])*(-y/1[m]))
I0 = heat
Rotr = 0.1
X14c = X14C(T)
X17 = X14X17H2a(T)
area = (rad/1[m])^2-(x/1[m])^2-(z/1[m])^2
b = 100[nm]
gaus = exp(-(((z/0.01[m])^2)+(x/0.01[m])^2)*sigma)
heat = power/(pi*rad^2)
imp = step(step(t0/1[s]-t/1[s])-0.25)
kx = l2-(l2-l1)*step(step(b/1[m]-y/1[m])-0.25)
l1 = 0.8 [m-1]
l2 = 0.03 [m-1]
power = 200 [W]
rad = 1[mm]
sigma = 200
sourse = gaus*step(area)*I*imp
t0 = 250E-6[s]
x0 = 0[m]
z0 = 0[mm]
END
FUNCTION: X14C
Argument Units = [C]
Option = Interpolation
Result Units = [J kg^-1 C^-1]
INTERPOLATION DATA:
Data Pairs = 20,462
Extend Max = On
Extend Min = On
Option = One Dimensional
END
END
FUNCTION: X14X17H2a
Argument Units = [C]
Option = Interpolation
Result Units = [C^-1]
INTERPOLATION DATA:
Data Pairs = \
20,9E-06,100,9.8E-06,200,1.06E-05,300,1.08E-05,400,1.1E-05,500,1.11\
E-05,600,1.18E-05,700,1.1E-05,800,1.07E-05,900,1.14E-05,1000,1.15E-\
05
Extend Max = On
Extend Min = On
Option = One Dimensional
END
END
FUNCTION: al2o3a
Argument Units = [K]
Option = Interpolation
Result Units = [K^-1]
INTERPOLATION DATA:
Data Pairs = \
100,9.09E-06,300,7.82E-06,350,7.9E-06,400,8E-06,500,8.18E-06,600,8.\
36E-06,700,8.55E-06,800,8.73E-06,1000,9.09E-06,1200,9.44E-06,1400,9\
.8E-06,1600,10.15E-06,1800,10.5E-06,2000,10.85E-06,2200,11.2E-06
Extend Max = On
Extend Min = On
Option = One Dimensional
END
END
FUNCTION: al2o3c
Argument Units = [K]
Option = Interpolation
Result Units = [J kg^-1 K^-1]
INTERPOLATION DATA:
Data Pairs = \
300,775,350,886,400,959,500,1050,600,1105,700,1143,800,1173,1000,12\
23,1200,1268,1400,1310,1600,1349,1800,1388,2000,1425,2200,1463
Extend Max = On
Extend Min = On
Option = One Dimensional
END
END
FUNCTION: al2o3des
Argument Units = [K]
Option = Interpolation
Result Units = [kg m^-3]
INTERPOLATION DATA:
Data Pairs = \
300,3970,350,3965,400,3961,500,3951,600,3941,700,3931,800,3921,1000\
,3900,1200,3879,1400,3856,1600,1833,1800,3810,2000,3785,2200,3760
Extend Max = On
Extend Min = On
Option = One Dimensional
END
END
END
MATERIAL: al2o3
Material Group = CHT Solids
Option = Pure Substance
Thermodynamic State = Solid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = Al2
Molar Mass = 101.96 [g mol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = AL2C
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 40 [W m^-1 K^-1]
END
THERMAL EXPANSIVITY:
Option = Value
Thermal Expansivity = AL2A
END
END
END
MATERIAL: x14X17H2
Material Group = CHT Solids
Option = Pure Substance
Thermodynamic State = Solid
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = 7750 [kg m^-3]
Molar Mass = 1.0 [kg kmol^-1]
Option = Value
END
SPECIFIC HEAT CAPACITY:
Option = Value
Specific Heat Capacity = X14c
END
THERMAL CONDUCTIVITY:
Option = Value
Thermal Conductivity = 20.9 [W m^-1 K^-1]
END
THERMAL EXPANSIVITY:
Option = Value
Thermal Expansivity = X17
END
END
END
END
FLOW: Flow Analysis 1
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units = [s]
END
ANALYSIS TYPE:
Option = Transient
EXTERNAL SOLVER COUPLING:
Option = None
END
INITIAL TIME:
Option = Automatic with Value
Time = 0 [s]
END
TIME DURATION:
Option = Total Time
Total Time = 500E-06 [s]
END
TIME STEPS:
Option = Timesteps
Timesteps = 5e-005 [s]
END
END
DOMAIN: al
Coord Frame = Coord 0
Domain Type = Solid
Location = B87
BOUNDARY: Boundary 1
Boundary Type = WALL
Location = F89.87
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
BOUNDARY: Default Solid Solid Interface Side 1
Boundary Type = INTERFACE
Location = F88.87
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: al Default
Boundary Type = WALL
Location = F83.87,F84.87,F85.87,F86.87
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic with Value
Temperature = 20 [C]
END
END
END
SOLID DEFINITION: Solid 1
Material = x14X17H2
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
END
DOMAIN: al2o3
Coord Frame = Coord 0
Domain Type = Solid
Location = B30
BOUNDARY: Boundary 2
Boundary Type = WALL
Location = F32.30
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
BOUNDARY SOURCE:
SOURCES:
EQUATION SOURCE: energy
Flux = sourse
Option = Flux
END
END
END
END
BOUNDARY: Default Solid Solid Interface Side 2
Boundary Type = INTERFACE
Location = F70.30
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Conservative Interface Flux
END
END
END
BOUNDARY: al2o3 Default
Boundary Type = WALL
Location = F33.30,F34.30,F35.30,F36.30
BOUNDARY CONDITIONS:
HEAT TRANSFER:
Option = Adiabatic
END
END
END
DOMAIN MODELS:
DOMAIN MOTION:
Option = Stationary
END
MESH DEFORMATION:
Option = None
END
END
INITIALISATION:
Option = Automatic
INITIAL CONDITIONS:
TEMPERATURE:
Option = Automatic with Value
Temperature = 20 [C]
END
END
END
SOLID DEFINITION: Solid 1
Material = al2o3
Option = Material Library
MORPHOLOGY:
Option = Continuous Solid
END
END
SOLID MODELS:
HEAT TRANSFER MODEL:
Option = Thermal Energy
END
THERMAL RADIATION MODEL:
Option = None
END
END
SOURCE POINT: Source Point 1
Cartesian Coordinates = 0 [m], 0 [m], 0 [m]
Option = Cartesian Coordinates
END
END
DOMAIN INTERFACE: Default Solid Solid Interface
Boundary List1 = Default Solid Solid Interface Side 1
Boundary List2 = Default Solid Solid Interface Side 2
Interface Type = Solid Solid
INTERFACE MODELS:
Option = General Connection
FRAME CHANGE:
Option = None
END
PITCH CHANGE:
Option = None
END
END
MESH CONNECTION:
Option = Automatic
END
END
OUTPUT CONTROL:
RESULTS:
File Compression Level = Default
Option = Standard
END
TRANSIENT RESULTS: Transient Results 1
File Compression Level = Default
Option = Standard
OUTPUT FREQUENCY:
Option = Timestep Interval
Timestep Interval = 2
END
END
END
SOLVER CONTROL:
ADVECTION SCHEME:
Option = High Resolution
END
CONVERGENCE CONTROL:
Maximum Number of Coefficient Loops = 10
Minimum Number of Coefficient Loops = 1
Timescale Control = Coefficient Loops
END
CONVERGENCE CRITERIA:
Residual Target = 1.E-4
Residual Type = RMS
END
TRANSIENT SCHEME:
Option = Second Order Backward Euler
TIMESTEP INITIALISATION:
Option = Automatic
END
END
END
END
COMMAND FILE:
Version = 18.2
Results Version = 18.2
END
SIMULATION CONTROL:
EXECUTION CONTROL:
EXECUTABLE SELECTION:
Double Precision = No
Large Problem = No
END
INTERPOLATOR STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
END
PARALLEL HOST LIBRARY:
HOST DEFINITION: desktopknv36k5
Remote Host Name = DESKTOP-KNV36K5
Host Architecture String = winnt-amd64
Installation Root = C:\Program Files\ANSYS Inc\v%v\CFX
END
END
PARTITIONER STEP CONTROL:
Multidomain Option = Automatic
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARTITION SMOOTHING:
Maximum Partition Smoothing Sweeps = 100
Option = Smooth
END
PARTITIONING TYPE:
MeTiS Type = k-way
Option = MeTiS
Partition Size Rule = Automatic
END
END
RUN DEFINITION:
Run Mode = Full
Solver Input File = 2703.def
Solver Results File = \
D:/ansys/2703_pending/dp0_CFX_2_Solution_3/2703_002.res
END
SOLVER STEP CONTROL:
Runtime Priority = Standard
MEMORY CONTROL:
Memory Allocation Factor = 1.0
END
PARALLEL ENVIRONMENT:
Number of Processes = 1
Start Method = Serial
END
END
END
END
Need at least 2 data pairs for interpolation
+--------------------------------------------------------------------+
| An error has occurred in cfx5solve: |
| |
| C:\Program Files\ANSYS Inc\v182\CFX\bin\winnt-amd64\ccl2flow.exe |
| was interrupted by signal QUIT (3) |
+--------------------------------------------------------------------+
+--------------------------------------------------------------------+
| For CFX runs launched from Workbench, the final locations of |
| directories and files generated may differ from those shown. |
+--------------------------------------------------------------------+
This run of the ANSYS CFX Solver has finished.
и скриншот ошибки
Вложение | Размер |
---|---|
bezymyannyy.png | 62.97 КБ |
Здравствуйте!
А этот файл существует? D:/ansys/2703_pending/dp0_CFX_2_Solution_3/2703_002.res
здравствуйте! даже папки такой нету
приложил скрин окна из той папки
Тогда в воркбенче выставьте в свойствах ячейки solution Initialization option = Update from initial conditions.
спасибо, но не сделал все по новой, и заработало)
Добавить комментарий